1,4-DIOXASPIRO[4.5]DECA-6,9-DIEN-2,8-DIONE DURCH ANODISCHE OXIDATION VON 4-METHOXYPHENOXYESSIGSAUREN

H. G. Thomas* und H.-W. Schwager

Institut für Organische Chemie der RWTH Aachen Professor-Pirlet-Straße 1, D-5100 Aachen, Deutschland

Summary: On preparative anodic oxidation in acetonitrile at graphite electrodes 4-methoxyphenoxyacetic acids 1 cyclize to 1,4-dioxaspiro[4.5]deca-6,9--dien-2,8-diones 2.ElectroanaTytical results are given.

Wir elektrolysierten 4-Methoxyphenoxyessigsäuren <u>1</u> an Graphitelektroden in Acetonitril und erhielten 1,4-Dioxaspiro [4.5]deca-6,9-dien-2,8-dione <u>2</u>.

1,4-Dioxaspiro [4.5]deca-6,9-dien-2,8-dione $\underline{2}$ ("Spirodioxolanonarenone") wurden erstmals von Gallo⁽¹⁾ durch Oxidation von 4-Hydroxyphenoxyessigsäuren mit Halogenen hergestellt; außerdem wurden solche Phenoloxidationen mit Bleitetraacetat⁽²⁾, N-Bromsuccinimid⁽³⁾ und Mangandioxid⁽⁴⁾ durchgeführt. Dioxaspirodecadiendione wurden auch photochemisch ⁽⁵⁾ und durch anodische Oxidation von N-Toluolsulfonylaniliden⁽⁶⁾ erhalten.

Die Substanzklasse besitzt Interesse als isolierte Zwischenstufe bei der Synthese der Naturstoffe rifamycin S⁽⁴⁾, chasmanine^(3a) und ryanodol^(3b)sowie im Pflanzenschutz wegen ihrer fungiziden und bakteriziden Wirkung⁽²⁾. Zwar wird der Aufbau des Cyclohexadienonsystems durch anodische Oxidation vcn para-substituierten Phenolen oder deren Alkyethern zum Beispiel in der Peptidsynthese⁽⁷⁾ und bei der Synthese von Morphinandienonen⁽⁸⁾ durchgeführt, unseres Wissens aber sind Dioxaspirodecadiendione <u>2</u> durch anodische Oxidation von Hydroxyphenoxyessigsäuren oder deren Alkylethern bisher noch nicht hergestellt worden. Cyclische Voltammetrie der Carbonsäuren <u>1</u> sowie der Methylester und Cäsiumsalze zeigt, daß in einer Aromatenoxidation Elektronenübertragung vom aromatischen Kern und nicht von der Carboxylatfunktion stattfindet, da deren Derivatisierung auf das Oxidationspotential ohne Einfluß bleibt.

<u>Tabelle 1:</u> Cyclische Voltammetrie von 4-Methoxyphenoxyessigsäuren <u>1</u> und deren Methylestern und Caesiumsalzen

	Pea E (akpotential vs. Kalome			
4-Methoxyphenoxy- essigsäuren <u>1</u>	Säure	Me-Ester	Cs-Salz	<u>Meßbedingungen:</u> abs. Acetonitril (Uvalsol, Merck)	
$R^1/R^2=H$	1,39*	1,40	/**	0,1 mol/l LiCLO ₄	
R^{1} = H; R^{2} = CH ₃	1,38*	1,41	/	Pt-Elektroden 1 cm ²	
R'/R ⁻ =CH ₃	1,38*	1,43	1,36	Scan range -0,2 bis +2,2 V	
$R^{1}/R^{2} = -(CH_{2})_{5}$ -	1,38*	1,42	/	Scan Rate 100 mV s ⁻¹	

*Bezugswert 1,4-Dimethoxybenzol 1,29

**unlöslich in CH₃CN

Untersuchungen durch Chronopotentiometrie und rotierende Scheibenelektrode (Pt) zeigen eine irreversible zwei-Elektronenoxidation und machen einen ECEC Mechanismus wahrscheinlich⁽⁹⁾.

Präparative Elektrolysen wurden in ungeteilter Zelle an zylindrischen ca. 135 cm² großen Graphitelektroden der Fa. Sigri Elektrographit GmbH galvanostatisch durchgeführt. Oxidiert wurden 0,04 mol Carbonsäure in 400 ml Acetonitril mit 1 ml Triethylamin als Leitsalzbildner, bei einer Stromstärke von 0,5 A. Abbruch erfolgte bei 2/3 molarem Umsatz, wenn die Klemmenspannung 30 V überstieg.

Neben 1,4-Dioxaspiro[4.5]deca-6,9-dien-2,8-dionen <u>2</u> und 4-Methoxyphenol <u>6</u> entstanden auch das Acylal <u>3</u> und die Diacylamine <u>4</u>. <u>3</u> und <u>4</u> leiten sich aus nach CO_2 -Abspaltung gebildeten Carboxoniumionen ab, die ähnlich den von Thomas⁽¹⁰⁾ beschriebenen von Acetonitril oder Carbonsäure abgefangen werden und zu den isolierten Produkten führen. Nur bei 4-Methoxyphenoxyessigsäure (<u>1</u>, R¹/R²=H) wird der offensichtlich radikalisch gebildete Glykoldiether <u>5</u> in geringer Ausbeute isoliert. Aufarbeitung erfolgte säulenchromatographisch.

Tabelle 2:Produkte bei der Elektrolyse von 4-Methoxyphenoxyessigsäuren 1 in
Acetonitril an Graphitelektroden. (Ausbeutenangaben beziehen sich
auf umgesetzte Carbonsäure und wurden nach Isolation bestimmt)

	Ausbeute " / Tp.						
Produkt	R ¹ /R ² =-(CH ₂) ₅ -	$R^1/R^2=CH_3$	R ¹ =СН ₃ ;R ² =Н	$R^{1}/R^{2}=5$			
Dioxaspirodecadiendion $\underline{2}$	40(<u>2a</u>)/61°C	41(<u>2b</u>)/81°C	22(<u>2c</u>)/103,5°C	10* (2d)			
Acylal <u>3</u>	/	/	/	1,4			
Diacylamin <u>4</u>	/	/	1,4*	9			
Glykoldiether <u>5</u>	/	/	/	1,5			
4-Methoxyphenol <u>6</u>	20	20	14	/			

Ausbeute % / Fp

*nicht isoliert.

Spektroskopische Daten zu 2a, 2b und 2c siehe Lit. 11)

1,4-Dioxaspiro [4.5]deca-6,9-dien-2,8-dione 2 sind nicht nur hydrolyseempfind-

lich⁽²⁾, sondern zersetzen sich auch am Tageslicht bereits nach wenigen Stunden.

Die Zersetzungsgeschwindigkeit nimmt mit steigendem Alkylierungsgrad an C-2 ab. Verbindung 2d konnte deshalb bisher nicht isoliert, jedoch spektroskopisch charakterisiert werden. Die Elektrolyse der Methylester von 1 (mit LiCLO $_A$) ergab kein Dioxaspirodecadiendion 2.

Literatur

- 1) a) G.G. Gallo, C.R. Pasqualucci, P. Sensi; Ann.Chim. 52, 902 (1962). b) G.G. Gallo, C.R. Pasqualucci, A. Diena; J. Org.Chem. 30, 1657 (1965).
- 2) a) M.B. Meyers, M.J. Gallagher, F.F. Orr; Proc.R.Ir.Acad.Sect. B 77, 507 (1977). b) A.E. Brown, J.A.W. Carson, M.J. Gallagher, M.B. Meyers; Spec.Publ.Chem.Soc. 29,122(1977).
- 3) a) K.S. Atwal, R.M. Bettolo, I.H. Sanchez, T.Y.R. Tsai, K. Wiesner; Can.J.Chem. 56,102(1978). b) A. Belanger, D.J.F. Berney, H.J. Borschberg, R. Brousseau, A. Dotheau, R. Durand, H. Katayama, R. Lapalme, D.M. Leturc, C.C. Liao, F.N. Mac Lachlan, J.P. Maffrand, F. Marazza, R. Martino, C. Moreau, L. Saint-Laurent, R. Saintonge, P. Soucy, L. Ruest, P. Deslongschamps; Can.J.Chem. 57, 3348 (1979).
 c) T.H. Chang, C.P. Chuang, C.C. Liao, H.S. Lin, Y.G. Ueng; J.Chinese Chem. Soc. 27,97(1980).
 d) N.R. Hunter, P.M.C. Wang; Synth.Comm. 12, 427 (1982).
- 4) B.L. Seong, M.H. Han; Chem. Letters 627 (1982).
- 5) R.M. Wilson, S.W. Wunderly, T.F. Walsh, A.K. Musser, R. Outcalt, F. Geiser, S.K. Gee, W. Brabender, L. Yerino, T.T. Conrad, G.A. Tharp; J.Am.Chem.Soc. 104, 4429 (1982).
- 6) I.G.C. Coutts, M. Edward, D.R. Musto, D.J. Richards; Tetrahedron Letters, 5055 (1980).
- 7) a) H. Iwasaki, L.A. Cohen, B. Witkop; J.Am.Chem.Soc. 85, 3701 (1963).
 b) A.I.Scott, P.A. Dodson, F. Ac. Capra, M.B. Meyers; J.Am.Chem.Soc. 85, 3702 (1963). c) M.H. Khlifa, G. Jund, A. Rieker; Liebigs Ann. 1068 (1982).
- 8) a) L.L. Miller, F.R. Stermitz, J.R. Falck; J.Am.Chem. Soc. 95, 2651(1973). b) L. Christensen, L.L. Miller, J.Org.Chem. 46, 4876 (1981). c) H. Klünenberg, C. Schäffer, H.J. Schäfer; Tetrahedron Letters, 4581 (1982).
- 9) H.W. Schwager; Diplomarbeit, Technische Hochschule Aachen 1982.
- 10) H.G. Thomas, E. Katzer; Tetrahedron Letters 887 (1974).
- 11) <u>2a</u>: ¹H-NMR (CDCl₃): 1,71 (m, 10H, CH₂); 6,45 (q,4H,CH). ¹³C-NMR(CDCl₃): 21,18/24,46/34,70(CH₂); 78,75(C-0);97,38(O-C-0);130,11/142,48(C=C,cis);173,71(COO);183,83(CO).IR(KBr):1790(CO); 1675(CO,kong.);1635(C=C,cis);UV(CH₃OH), $\lambda_{max}(\epsilon)$:214nm(14118);357nm(13). <u>2b</u>: ¹H-NMR(CDCl₃):1,60(s,6H,CH₃);6,45(q,4H,CH). ¹³C-NMR(CDCl₃):26,17(CH₃);77,23(C-0);97,17 (O-C-0);130,21/142,16(C=C,cis);174,30(COO);183,73(CO).IR(CDCl₃):1790(CO);1680(CO,konj.); 1640(C=C,cis);UV(CH₃OH), $\lambda_{max}(\epsilon)$:217nm(10647);282nm(694).

 - $\frac{2c}{2}: \frac{1}{H-NMR(CDCl_{3}):1,60(d,J=7Hz,3H,CH_{3});4,60(q,J=7Hz,1H,CH);6,45(m,4H,CH).}{13}C-NMR(CHCl_{3}):1,60(d,J=7Hz,3H,CH_{3});4,60(q,J=7Hz,1H,CH);6,45(m,4H,CH).}$ $\frac{17,51(CH_3);70,05(0-CH);98,15(0-C-0);129,86/131,37/141,59 (C=C,cis);172,34(COO);183,83(CO). IR(CDCl_3):1800(CO);1675(CO,konj.);1640(C=C,cis).UV(CH_3OH), \lambda_{max}(\varepsilon):222nm(3753);281nm$ (5099);366nm(86) .

Für die Verbindungen <u>2a-c</u> wurden korrekte Elementaranalysen erhalten.

(Received in Germany 8 June 1984)